Galerkin Finite Element Method and Finite Difference Method for Solving Convective Non-linear Equation

نویسنده

  • E. C. Romão
چکیده

The fast progress has been observed in the development of numerical and analytical techniques for solving convection-diffusion and fluid mechanics problems. Here, a numerical approach, based in Galerkin Finite Element Method with Finite Difference Method is presented for the solution of a class of non-linear transient convection-diffusion problems. Using the analytical solutions and the L2 and L∞ error norms, some applications is carried and valuated with the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

Kernel-based Collocation Methods versus Galerkin Finite Element Methods for Approximating Elliptic Stochastic Partial Differential Equations

We compare a kernel-based collocation method (meshfree approximation method) with a Galerkin finite element method for solving elliptic stochastic partial differential equations driven by Gaussian noise. The kernel-based collocation solution is a linear combination of reproducing kernels obtained from related differential and boundary operators centered at chosen collocation points. Its random ...

متن کامل

A Two-Stage, High-Accuracy, Finite Element Technique of the Two Dimensional Horizontal Flow Model

An algorithm and essential subroutines programs are presented which implement two stage finite element Galerkin method for integrating the complete two dimensional horizontal flow model. In this method high accuracy is obtained by combining the Galerkin product with a high-order difference approximation to derivatives in the nonlinear advection operator. Program includes the use of a weighted s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012